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ABSTRACT . 4
The initial value problem for the linearized spatially-homogeneous

Bo].tzmann equation has the form + Lf = 0 with fU,t = 0) given.

The linear operator L operates only on the ~ variable and is non-

negative, but, for the soft potentials considered here, its continuous

spectrum extencts to the origin. Thus one cannot expect exponential decay

xt~for f , but in this paper it is shown that I decays like e with

~ 
< 1 . This result will be used in part II to show existence of solutions

of the initial value problem for the full nonlinear, spatially dependent

problem for initial data that is close to equilibrium.
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SIGNIFICANCE AND EXPLANATION

The Soltzmann equation describes the evolution of a large system

of particles. The configuration of particles changes due to the motion

of the particles and the collisions of particles. The collisions proceed

according to the force law between particles. The *softP forces considered

here are ones for which the total effect of collisions is smaller for

a particle of higher energy.

If the system is close to equilibrium , then its evolution can be

described approximately by linear equations. In this paper the linear

Boltzmann equation with a soft potential is solved for all time. Pre-

viously only •hard5 potentials had been considered.
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THE BOLTZM~~N EQUATION WITH A SOFT POTENTIAL,

PART I: LINEAR, SPATIALLY-HOMOGENEOUS

Russel Caflisch

I. Introduction

The initial value problem for the Boltzmann equation of kinetic theory is
aF 3w

(1.1) + ~~~•~~~-+ Q(F,F) = 0

• F(t=O) F~

in which

(1.2) F = F(~ ,t,x)

(1.3) t E R~ , ~ e R
3
, x € R3

Throughout this paper an italic letter will represent a vector in R
3 

, while

the unitalicized letter signifies its magnitude. The quadratically nonlinear

operator Q vanishes if F is a Maxwellian:

(1.4) F
M~ 

P
312 

e_ k_ u1
2/2T

(2~T)

where p,u,T can be any functions of x and t . If they are constants,

F
M 

is an equilibrium solution of (1.1). We will study solutions of (1.1)

which are close to such an equilibrium and which are independent of space.

Write F in the form

(1.5) FU,t) = w(~) + v’~i~T~T f(~ ,t),

in which

(1 6) 
~~~~~~~~~~~ 

1 —
~~~~~

— 

(2it)3”~
Note that we have removed the p,u, and T by scaling and translating. The

equation for f is

(1.7) + Lf + vr (f,f) = 0

with

(1.8) Lf = 2w~~ Q (w,w~t.,

(1.9) vr (f,f) = w~~ Q(w~f,w~~).

Sponsored by the United States Army under Contract No. DAAG29-75—C-0024. This
materia]. is based upon work supported by the National Science Foundation under
(,rants No. MCS78—O9~25 and MCS76—07039.
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In this paper we consider only the linearized equation with given initial

data, i.e.

(1.10) ~f + L f = O 1

(1.11) f(~ ,0) = f
0
(F~) € N(L)~ ,

where N(L)’ is the orthogonal complement of the null space of L . This

last condition (1.11) on f
0 means that we have chosen the right Maxwellian

to perturb around; i.e. all the mass, momentum and energy is in the Maxwellian

distribution CA)

The linear operator L was analyzed extensively by Grad [5], and we take

our notation as well as the general outline of our procedure from there. Grad

showed that

(1.12) (LI) (Q = 
~Wf(~

) + (Kf)

where K is a compact integral operator and u(~) is a function which is

essentially of the form

(1.13) v(~) = (1 +

The operator L is seif—adjoint and non—negative, i.e.

(1.14) (Lf ,f) > 0,

and has 0 as an eigenvalue of multiplicity 5 . Since a compact perturbation

does not disturb the continuous spectrum of a self—adjoint operator [lii , the

decomposition (1.12) shows that

(1.15) a CL) = {A:A=v (~) for somecont

If the force law between two particles is a power of their distance

apa~t, i.e.

—s(1.16) F ( r )  = r ,

then the exponent y is found as

(1.17) ~~~~~

_ _

_
_ _ _ _ _ _ _

- 

:~.



The mathematical theory is sensitive to the sign of y . A hard potential

is a collision law for which y > 0 or s > 5. The values of v go from 1

to and so a CL) does likewise. All that is left in a(L) is discrete
cont

eigenvalues, and there is a lowest non-zero eigenvalue A
0 , 

which is positive.
4 - A t

This shows that the part of f in the range of L decays like e 0 Using

this decay various authors [6, 10, 121 have shown existence for all time for

the linear and nonlinear problems with spatial homogeneity or inhoinogeneity, if

the initial data is close to Maxwellian, i.e. if f0
(~ ,x) is small. For the

nonlinear spatially homogeneous problem, Arkeryd [1] has shown the global exist-

ence for a broad class of initial data.

on the other hand for a soft potential, with 3 < s < 5, the function v

has the expression

(1.18) v(~ ) (1 + ~)Y, —

with

(1.19) y = — > 0

(We have switched the sign of y to emphasis the negativity of the exponent.)

Now the values of v range from 0 to 1 , and so the spectrum of L goes

all the way down to 0 . Thus we cannot expect exponential decay in (1.10),

and none of the existence results mentioned above are applicable. Nonetheless we

show in this paper that the part of f in the range of L does decay at the

At 8 2
rate e with ~ 

= and- A > 0 . This is our main result and is stated

precisely in Section 3. The reason for this decay is that the small values of

A in a(L) correspond to small values of v(~) and to large velocities

But we will assume that looks approximately like e~~~~, i.e. that it

is comparable to a Maxwellian, so that these large velocities are relatively

• unimportant.

—3—
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The exact form of L and a modification to remove its null space are

presented in Section 2. After the main result is stated in Section 3, an

outline of the proof is given in Section 4. Sections 5 and 6 are devoted to

estimates on the compact operator K . Then the spectrum of L restricted

2 .to £ C~ : ~ <w) is analyzed in Section 7. In Section 8 we pick the constants

which appear in previous sections. Finally in Section 9 the itera-

tion equation is solved and in Section 10 and 11 it is shown that the itera-

tion procedure converges for all time and that the decay is maintained for

the c2 norm. In Section 12 we find that the a-norm is preserved and the

sup norm decays. -

In Part II we will show the global existence of solutions of the spatially

periodic initial value problem for the linear spatially dependent equation and

for the full nonlinear equation (1.1) with small initial data.

Inverse power repulsive forces are often used as first approximations to

more realistic but complicated forces [7]. The power s is usually chosen to

give agreement with the coefficient of viscosity or heat flow or some other

measurable quantity of the gas. For most gases hard forces, with s between

9 and 15, are most realistic while for a few gases soft forces, with s below

but close to 5 , are relevant (2 ]. Many authors [ 9, 2, 4) have also used

the Maxwellian force s=5 because of its computational simplicity. Of course

there is interest in the very soft Coulomb force with s=2, which our treatment

of 3 < s < 5 does not include.

The existence of solutions of the full nonlinear, spatially dependent

problem (1.1) was proved by Glikson (3] and by Kaniel and Shinbrot (81 for a

short time. Their work included hard as well as soft potentials. Glikson

$ solved the equation by direct iteration. Kaniel and Shinbrot used decreasing

and increasing sequences of functions which squeezed down on the solution. Both

allow a very general class of initial data. Our results are more restrictive

d

—4— 
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since we consider only small perturbations from equilibrium, but are stronger

since we obtain existence and decay for all time.

• Throughout the paper there are estimates with constant coefficients. It

is not necessary to keep careful account of these constants, and so we will

use - c as a generic constant replacing any other constant (such as C
2

) by c

I am very grateful to Harold Grad, who suggested this problem and found

the improved estimates for soft potentials which are basic to its solution . He

also pointed out the decay of the eigenfunctions which is crucial in the analysis

of a(L) in Section 7. In addition I had a number of helpful and stimulating

discussions with Percy Deift and George Papanico].aou. This work was performed

at the Courant Institute and at the Mathematics Research Center; I am happy to

acknowledge their support.

I
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II The Linearized Collision Operator

The Boltzmann collision operator has the form

(2.1) Q(F,F)(~) = f(F’F~ — FF1) B(8,V) dOdsd~1

where

(2.2) 
~~~~c_l 

—
~~~~~~~

.

(2.3) F’ = F(~ ’) F~ = F(~~) F1 
=

= ~ + ct(a . v)
(2.4)

and ~ is the unit vector in the direction of the apse line. The angle 8 range

from 0 to with ir-28 being the angle of deflection in center of mass co-

ordinates, and i is the angular coordinate in the impact parameter plane.

Grad (5] has found exact and convenient forms for the function v and the

compact operator K in (1.12). These are

(2.5) vt~) = 2n f BCQ ,v)w(rØ dOdii,

(2.6) Kf(~) = f k(E,r~) f(~) d~,

(2.7) k •-k
1 +

(2.8) k
1
(~ ,~ ) = 2rrw (~) w~ (r*) f B(O,v) ~~ 

2(2.9) k
2
(~ ,~ ) = 

3/2 2 exp[— ~ v - 

~~~(2ii) v

f exp[— 51w + -~2~~ 
Q(v,w) dw

in which

(2.10) V ~~~~-~~= a(a •V ) v = V c o s  0,

(2.11) w = V - a ( c x • V )  w = V s i n 0,

$ (2.12) 
‘

with 
~ 

parallel to v and 
-~2 

perpendicular to V . Note that w is

perpendicular to v and the integral in (2.9) is over that 2—dimensional plane

wi th v held constant. ‘.‘e lefine
-p.

.

—6—
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(2.13) = 
2~sine~ 

(B(8,V) + BC — e,v)]

and w is defined in (1.6).

We modify L to eliminate its null space, which is spanned by the five

functions 
‘

~~~~~~~~~~~~

. ., C~4 
defined by

=

(2.14) ~~~~ = ~~~~~~ I = 1,2,3

*J)4~~ =
~~~~~ W ~

Replace L by L with
4

(2.15) Lf = Lf + ~ ~~~. ( ,f)
i=O

This amounts to replacing k1 by i~ where

4
(2.16) = Ic1 

— 
~~ ~~hp.(n)
i=0

With this modification, L is positive, i.e.

(2.17) (Lf,f) > 0

Furthermore the problem

(2.18) + LI = 0

(2.19) f(t=0) = f0 €

is equivalent to th€~ ~rob1em (1.10) and (1.11). From now on we will drop the bar

and L and k1 
will mean the modification in (2.15) and (2.16). The reason for

the modification is that, although it does not change the problem, it does affect

the proof. We will be performing a velocity cutoff , multiplying L by Xw 
de-

fined in (4.8) and applying Xw
L to functions Xw

f
~ 

But N(L)’ is not invariant

under this multiplication. To get rid of this nuisance we have removed the null

space by modifying L

We study only soft potentials, i.e. v must satisfy

~7.20) c
0
(l + ~~)~~~

‘ 
< v(~) ~ c1

(1 +

where c
0
,c1 

and 0 < -j . 1 are positive constants.

—7— 
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In addition we assume an angular cutoff to the collision process, which means

that

(2.21) B(0,V) < 
~ 
“ ~

‘
J sinO cosol .

In other words B must approach zero linearly at 0 = 0 and 0 = , and it,

as well as the total collisional cross section v , must decay algebraically for

large V and have restricted growth for small V . The angular cutoff assump-

tion was first suggested by Grad (51 and used in many subsequent works (e.g.

(1, 3, 6, 8, 10, 12]).

The formulas above are more explicit if the intermolecular force is an

inverse power, F = K/ r 5 
, with 3 < s < 5. Then

(2.22) B(0,V) = V 8(0)

5—s(2.23) 

~-r
Furthermore

(2 .~ 4) 
~‘( ~

) = 
~ 

f I n — 

~I ~ exp(—~
(2 .25 )  80 = (21T) 2 1n/2 B (0)de,

which satisfies (2.20). The angular cut—off assumption (2.21) is a restriction

on 8(0).

-8-
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III Main Result

Before stating the main theorem we first define a few useful norms.

The notation is not confusing, although it is not entirely consistent.

Definition

11 111 E f f (~ )
2 dE

3
R 2

hf  It r~ 
sup (1. + ~)

r 
e~~ 11 (Q 1

~~

H III E II fH
a

hl fif E
0,0

The subscript a will always signify exponential decay and r alge-

braic decay. If y ever appears in a subscript it is in the algebraic part.

The algebraic decay is used in the proofs but not in the results.

The following theorem establishes existence, uniqueness, and decay for

the spatially-homogeneous linearized Boltzntan equation with a soft cut—off

potential.

Theorem 3.1 Let 0 < a  < ~~~. Let € N(L)1 with 11f011 < . Then there

is a uniQue solution of (1.10) and (1.11). Its decay in time is give~~~~

(3.1) IIf( t)fl < cli f II e At

— O c t

t~(3.2) f l f ( t ) U  < cflf II e
O c t

(3.3) IIf (t)II < cli f H
a —  O c t

in which

(3.4)

(3.5) A = (1 — 2c ) c *
1 8  

(_~2_) 8

for any e > 0. The constants c depend on ~

—9—
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Remarks 1) The constant B comes from the following simpler problem

which can be solved exactly. Let

(3.6) f(t,~~) + 
~~~~~~ f ( t ,~~) = 0 , for ~ > 1

(3.7) f(0,~~) = ~~~~

Then
2 
t —Y

(3.8) f(t,~~) = e

(3.9) If Ct) II = c e
in which B is given by (3.4).

2) Notice that in both (3.1) and (3.2), the norm on the right is differ-

ent from that on the left. This will cause complications later (in Part II)

when we solve the nonlinear problem for small initial data, but it seems to be

necessary .

3) There is a simple existence and uniqueness theorem which does not

guarantee decay :

Theorem 3.2 The equation (1.10) and (1.11) with f
0 

€ c
2
(~ )

has a unique solution f ( t,~~) in £
2 
~~ , and it satisfies

(3.10) IIf(t)II < e
Kt

IIf
0

II

where K is a bound on L, i.e.

(3.11) ILH < K

This simple result proves the uniqueness and existence in Theorem 3.1.

The real problem is to obtain the decay , which will be needed for subsequent

work on the nonlinear problem .

p.

—10—
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IV Outline of the Proof of Theorem 3.1.

First we give a very rough indication of the proof. Split the velocity

space into two parts A and A with

A’ = f ~~~~, ~~<w}
(4.1) 

—
= { 

~~ , ~ > w}.

In ~ the solution f of the Boltzmann equation is of size e~~~ . Choose

w so that 
2 

= , i.e.

(4.2) w =/!t~~
2

In A we consider the operator L = X
A
L=v+X

A
K defined on £

2 (A) , where XA 
is the

characteristic function of A. Since m m  v(~ ) = v (w) ~ c0w~~ , 
the continuous

spectrum of L has the lower bound v (w). The crucial fact, stated in Theorem

7.1, is that also there are no eigenvalues below Iiv(w) for any 1> ~i > 0

Thus (we omit the ~i in this rough statement)

(4.3) iIe~~
t)

It < e

_c
0
w 

= exp -c0( 
~ )

2 
t 812}

and

t
lie 1 

L(S)dS
11 < exp{—c

0 
ç !~. ) 2 jt S~~~”2dS}

(4.4)

; exp{_c~ ( ~~
) l-yB/2 

t 812}

Now to get decay like e
At inside A , we ask that

(4.5) At8 = 
l-y~ /2

and are led to

(4.6) = 
~j~~~

—

- 

(4.7) ~~l (
O
)
B

which is approximately the choice of constants in Theorem 3.1.

The actual proof requires a little more care. We make the splitting veloc—

ity w constant in ‘-he interval (T, T+11 . Define the characteristic functions

—11—
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1

Xw(Q -
(4.8) 0 ~~~€ A

The Boltzmann equation (1.10) can be rewritten as

(4.9) (xf)
~ 

+ XL x~ 
= —XKXf

(4.10) (xf)
~ 

+ v~f = —~x(Xf + xf ) .
Solve these equations in the time period [T,T+1] using the following iterative

scheme

(4.11) 
~ n+l~t 

+ XLxf~~ 1 
= —xKxf~

(4.12) 
~~ n+l~t 

+ ‘
~~~n+l = —~

K(
~f + xf )

We show in Section 9 that 
~~~ 

decays if f is decaying, and in Section 10

that f -
~~ f, which solves (1.10) and (1.11) and has the same decay rate. But

in each interval we pick up a factor of (1 + c T 1”3). This results in a

small loss in the coefficient in the exponential decay, as shown in Section 11.

The above argument provides the decay for II f II. We show the decay of

h f ii and the preservation of h f hi in Section 12.
a

p. —12—
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V Estimates on the Integral Kernels

The integral operator K is better behaved for a soft potential than for

a hard potential. Grad (5] briefly pointed this out, by noting that his esti-

mate (60) could be improved if the potential was soft. The following estimates

on the kernel Ic are the main results of this section .

Proposition 5.1 For any 0 < c < 1 , and any ~ € R
3 

and 
~ 

c R3

(5. 1) kU ,r~) < c ~~
- (1 + ~ + ~) — ( Y +l) ex p {— ( l — K )  C ~~ V

2 
+ 5 c~) },

(5.2)  f k (~~, r~)dr * < c(l  +
3
R 

k (~~~ )
2
d~~ < c(l +

For a soft potantial the kernel k is Hilbert—Schinidt, since the right hand

side of (E.3) is integrable in ~~~.

Note. In (5.1) the constant c may depend on c . But this does not

~‘atter since we only use several choices of c . The vectors V and 
~ 

are

defined by (2.10) and (2.12). These estimates are valid for —l < < 1 , i.e.

for hard as well as soft potentials.

These estimates will be proved using the next two propositions.

Proposition 5.2 For any v € R
3 
, K R

3 
and. w € R

3
, we have

(5.4) O(v,w) < c v(v2 + w
2) 2

(5.5) exp{-~~(w + ~~)
2} fl(v,w)dw < c(l  + 

~2 
+ v)~~~~~ 

‘ 
‘ 

-

in which ~) = € R
3
: w i v

The inequality (5.5) is an improved version of Grad ’s estimate (60) in [5).

Proposition 5.3 For any p > -3 and any a > 0 , b > O , there is a

constant c (depending on p, a,b ) so that

(5.6) f v~ ex p {— a v 2 — b~~~}d~~ < c(l  +

for any ~ . The vectors and v are defined as in (2.10) and (2.12).
p.

These propositions are proved in reverse order.

— 13—
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Proof of Proposition 5.3. Denote the integral by I and change its

variable of integration to v = T) - Write ~ v = x F v and change to

polar coordinates around ~ , so that d v = V
2 dvdxd~m . We can rewrite

as

(5.7) 2 
= ~ (2~ 

2 
v2)

2 

~ (2x~ +

Since the integrand is independent of ~ , the integral in (5 .6) is

(5.8) I = 2~r ~~ 
~~~~ -av

2 

~
l 
~~~~~~~ 

+ v)
2 

dx dv.

The inner integral is estimated by

(5.9) j1 e~~~~ 
(2x~ + v)

2
dX .! j

2~+v e~~~~~

2
dy 

~~~~~~~~~~~~~

Therefore
2

p+2 -av cI < 2 i r f V e ~~~~dv
(5.10) 0

ii~~~~
.

Proof of Proposition 5.2

a) According to the angular cutoff hypothesis (2.21) and the definition

(2.13), (2.10), and (2.11),

Q(v,w) < c~cos O~v
’
~

(5.11)

2 —
~~~ 2 2 —y/2< c ( l + r )  (v + w )

where -r = tan B = w/v. Therefore

(5.12) Q < c(v
2 

+

as in (5.4)

b) Using the bound (5.12), we estimate

~~. / exp{-~ (w + j2
) Q(v,w)dw < f exp{-~~(w + ~ 2 ) 2 }(v 2 

+ w
2) 2 

dw

(5.13) 
-

2
< f e~~~ (v 2 

+ (w — 
2 

d .
— 

S

_ _
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Denote this integral by I , and split it into two parts: I~~, with w >

and 12, with w 
~
-
~ 2 

Estimate these two separately. First
- 

2
I
l 

= f e~~
’ (v2 + 

~~~ c2
)) 2 dw

w>~~
(5.14) 2

< c(v +

In the domain {w < 

~~~ 
we have

(5.15) + — 

~~ 
~ +

So the integral 12 
is bounded by

2 -
~~~~~~~~~—~w 2 2 2

‘2 
= f e (v + — 

~~ 
dw

(5.16)
-~~ ±~2 2 2

< c(v +

Furthermore since -j < 1, the integrand in I is integrable even for ~~ . 
= .

~.2 
= 0.

Combining this with (5.14) and (5.16), it follows that

(5.17) I < c(l + V +

Proof of Proposition 5.]. First we grove (5.1) for Ic1 
and k

2 
separately (recall

that k
1 
has been modified as in (2.16)).

a) According to (2.16), (2.8), and (2.21), we know that
2 2 2(5.18) k

1C~ ,ri) = e e ~~ .{2~~fB (O,v)de + 1 + F•~ + ~ n },

in which

(5.19) B (O,v) < v ~~
’
!cosO sinej.

Therefore (making very crude estimates)

< ~ ~~~ 
—~ (l-K/2) (~

2
+n
2)

(5.20) 
c v~~ (1 + ~ + )

_ (Y+l) 
e

l
~~~ 

(
~
2
+m~
2)

< c v~
1 (1 + + ~) ~~~~~ exp{-(l-c) (~~v2 

+

1 2  2 1 2  1 2since ~
-(

~~ + r~ ) > (~
. v + 

~~

. 

~~) .

—1 5—
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b) According to (2.9 ) , we know that

(5.2 1) k2 ( E ,n )  = 
2
3/2 ~~~~~~~~~~~~~~~~~~ fe xp {— 4 1w + C 2 1

2 }Q( v ,w) dw
(2n) v

Proposition 5.2 provides an estimate for the integral on the right , so that

1 1 2 1 2 — ( y + l )k2 (~~,~~) < c  — exp {—-~ v — 
~~~~

}(l + V +

(5 .22 )

1 — ( y + l )  1 2 1 2
(1 + V + C1 + C2

) exp{ — ( l—c ) (~~v —

Recall that v = In-~ I and ~ = 
~I~+n l , and thus

(5.23) 1 + V + C1 + > c( 1 + ~ + n)

Finally

(5.24) k2
(~~,~~) < c  (1 + ~ + n) ~~exp (— ( l— c) (~~v2 — 4C~~~

.

c) Now that (5.1) has been established the remaining estimates are easy .

We will prove ( 5 . 2 ) ;  the proof of (5.3)  is similar . We set c = ~ and integrate

(5. 1) with the result that

v 1(l + ~ + ~) _ ( Y 4 i ) . exp{-

— (y + l )  —1 1 2 1 2
(5.2 5) < cC ] .  + ~) v exp{— ~~-v - -~~C2 }d~

< c(l  +

using Proposition 5.3.

p.
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VI Estimates on K

In this section we present a number of estimates on the compact integral

operator K . These show that the application of K to f results in extra

algebraic decay in ~ . These estimates are valid for hard , as well as soft , potentials.

proposition 6.1 For any 0 < a < ~ and r > 0

(6.1) Ih KfhI 0~~~312 ~ 
cii fil

(6.2) II Kfhi < cii fhi
ct,r+Y+2 — a ,r

(6.3 )  hh Kf hh < cli fii

In the sequel we also need estimates on K with a cutoff .  Define the

characteristic function and as in (4.8 ) . The proauct ~~K has a

• simple estimate.

Proposition 6.2 For any 0 < a < ~ and any w > 0
2

(6.4) ih X
~
K Xw ~~ct,-j+3/2 

c c e~~ i fhi ,

Before proving these we state an elementary lemma.

Leimna 6.3

(6.5) v2 + 4 — 2~
2 

+ 2mi
2 

> o

for all ~ and ii with v and as in (2.10) and (2.12). For any w > 0,

(6.6) v2 + 4 C ~~+2w
2

— 2fl
2 > O

if ~ > w >

Proof of Proposition 6.1

a) First we prove (6.1). Using the Schwartz inequality and (5.3), we find

that

~K f(~) I < fl fli f k ( .~ ,fl ) 2dy~
(6.7) — — —

< chi fhi (1 + ~)
_
~~(2Y+ 3)

p.

—17—
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I
Then

(6.8) IlK fiI 0 y+3/2 ~ cii fii .

c) Next we prove (6.2). From the estimate (5.1), we get

J K  f ( ~ ) < c ~ (l+F+n)~~~~
1)exp{_ (l_E) (5v

2 
+ } J f ( fl) td.~.

< c e~~~ hi fil
— cz ,r

1 1 2  1 2  2 2 —r(6.9) . f — expf— (1—e ) (~~v + ~C1
) + ct~ — an } (l-4-

~ ) di~

< c e
2
(:+f)~~~

41)
ii fIi— a,r

~ (l+n)~~ exp{—O (v2 + 4C~ )}dn

l—4cz l—4ctafter picking K = —
~~-— and B = 

16 and applying (6.5) in Lemma 6.3.

Denote the integral on the right by I and split it into two pieces: I~ , with

n < , and 1
2 , with n > ~~ . Now is easy to estimate since v2 > ~~2 -

in that domain , and

_ei~;
2

(6.10) I
1

< c e

In the domain of integration for I
2~ 

we have (l-i-~ ) > ~(l+~), so that

(6.11) ‘2 ~~~~~~~ f !. exp{~ O(v
2
+4C

2)}dfl

- • -r-•l< c(1+~ )

using Proposition 5.3. Combining (6.10) and (6.11) we see that

(~~.12) I = 1
].+I~ ~

and thus

(6.13) 1K f (s) I ~ c( i +~)~~~~~~~
2
~ e~~~

2
iI fiI a r

from which (6.2) follows immediately.

I , ,
I’ I
p.

—18—
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d) We prove (6.3) for K by writing

ilK fit f C f k(~ ,~ )f(n)dn )
2d~~

3 3
R R

< sup~ f ( r ~) I f (  fk(~~,fl)dfl)
2
d~~

(6.14)

< chi fli f
< cil fil ,

using the estimate (5.2). This concludes the proof o~ Proposition 6.1.

Proof of Proposition 6.2

Write

)çK ~~ < Ufii ( f k(E ,fl)
2
dfl)

’
~

n <w

< c ii f it C f -5 (l+~+n) 2
~~~~~exp (—(i—e) (~v

2 
+ C~

)
(6.15) n<w v

2 2
— 

< c li fli e~~ ~~~ (i+~)
(1+1)

f .4 exp{-(l-c) (~v2 + C~
) - 2~~

2 
+ 2ct~

2
}di)~~.

n<w V

In the last step we used (6.6) in Lemma 6.3 after choosing c = 
14ct

0 = 
~~~~~~~~~~ and recognizing that F > w > n~ 

Therefore

~~Ky~ f < cli fl i  ~~~~~~~~ (l+ (Y+l)

f .4 exp {—0(v~ + 4 C~ ) }dn~
fl<W V

< cil f i l  e~~~
2_ 2 (1~~~~~~

(+l) (1÷~ )~~~

from which (6 .6)  follows immediately .

p.
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VII Spectrum of the Cutoff Operator.

Consider the linearized collision operator (with modification as in Section 2)

(7.1) L = v(~) + K

This operator has a positive numerical range, i.e.

(7 .2)  (Lf , f)  > 0

Since K is compact , the continuous spectrum of L comes from the values of ‘ ,

which range from 0 to = max ~ . There may be discrete eigenvalues as well.

In order to get decay in the solution of the problem (1.10) we need a CL) to be

bounded away from the origin. That is not true for L , but it is for L with a

velocity cutoff. Define

(7.3) L =)(,~L

as an operator from c2C~ < w) into itself with defined as in (4.8).

Theorem 7.1

Let 0 < ~i < 1. For w large enough, the operator Lw has spectrum

bounded from below by ~ v (w) , i.e.

(7.4) a(L ) c (A >
w

The ~j  which we use will be a constant chosen i’ Section 8. Theorem 7.1 is

proved using the following proposition about the decay of eigerifunctions of L .

Proposition 7.2

Let f be an eigenfuriction of L
w 

with eigenvalue A , i.e.

(7.5) f € < w)

L f = Af
w

and suppose that

(7.6) 0 < A <

Then f is rapidly decreasing at =, i.e. for each mu there is a constant Cm

such that

- p .  -20-

-
- 

~~~~~~ -:- -T •



r ~~~~~~~~~~~~~~

(7.7) iif(_
~.
)ii o m  .~. 

C
m

ii fit.

Furthermore c is independent of f, A , and w, but depends on p

Proof of Proposition 7.2

Since V is a decreasing function of ~ , it follows from (7.6) that

(7.8) u(~) — A > (l—p)u (~ )

The eigen—equation (6.11) can be written as

(7.9) ~çK f — ( ‘~— A ) f

As a result of (7 .8)  and (2 .20 )

(7.10) kf I i ( l — p ) v l f

> c0
( l—p )  (l+~ ) I f J ,

from which it follows that

(7.11) ii Kf ii  > cii fit
0,r+y 0,r

Use this in the estimates of Proposition 6.1. From (7.11) and (6.1) we

estimate

(7.12) 1i f1i
0 3 12 ~. cii Kfii 0 312~

< cil fil

Continue by iteration using (7.11) and (6.2) with a 0 , to Find

ii fii 07,,2 ~ 
cii Kfil

o 3/2+Y+2

(7.13) ~ cii fhi 0 3 ,,2

< cii f ii

(7.14) ii fli < c Ii fh i
0,2n+3/2 — n

from which (7 .7) follows

Proof of Theorem 7.1

Suppose that the theorem is not true. Then there is a sequence W

so that each operator L has a point A in its spectrum with A p v (w).

Since the continuous spectrum of L
~ 

is bounded below by v(w ), in fact

p.
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each A is a discrete eigenvalue with eigenfunction 
~n 

i.e.

(7.15) - L f = X f
w n n n

with if ii = 1. The above :quation (7.15) is in c2 (~ < w ) , but we also want

to think of f as a member of £
2(R3), by just extending it to be zero on

> w } .  we shall show that f -
~ f , in which f is a null eigenfunction

of the full  operator L . This is a contradiction , since L is a positive

operator.

The eigen-equation (7.15) can be rewritten as

(7.16) v(~ )f + y Kf = A f
n ~ n n nn

Since K is compact , then after restricting to a subsequence

(7 .17) Kf -
~ g in £2 (R ).

Since w -
~~~~~~~~~ ,

(7 .18) x- K f ~ ~ in £2 (R 3) .
Wn 

n

Also since v (w ) -+ 0 , then A -~- 0 , and

(7.19) A
n

f
n ~~ O in £2

(R
3) .

So we can take the limit in (7 .16) to get

(7 .20) Urn v (~~) f  = —g in

Unfortunately division by v (E) “~ (1 + ~) Y is not a continuous operator in £
2
,

but by first restricting to a subsequence we can change (7.20) into convergence

almost everywhere. Then it is possible to divide by V

(7.21) f -~ ~!g, a.e.

By Proposition 7.2, the f ’ s are uniformly bounded by the £2 function

c(l + ~~~
_2

. Since they converge pointwise , in fact they converge in c
2
, i.e. -

(7.22) 
~n 

-
~ ~ in £

2 (R3).

—22—
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Take the limit again in (7.15) to find

(7.23) Lf = 0

But since if ii = 1, f is not 0 . This is the intended contradiction which
n

concludes the proof of the theorem.

As a result of Theorem 7.1, we find

Corollary 7.3

-ty
(7.24) lie ~~ Ii < e

t
~

1\)
~~~~

p.
—23—
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VIII Choice of Constants

We are now ready to pick the coefficient A
0 , cutoff speed w , the

exponent 5 , and the constant p . This will be done for an arbitrary time

interval [T,T+1], and w will depend on T , while A
0,5, 

and p will  be

constant. Choose

(8.1) 5 = 24- y

( 8 .2)  A 0 = (l-c)a~~
8 [
~

]
(8.3) w =7! (A 0T8 + -j~ log T)

(8.4) p = (1—c

in which c > 0 is fixed but arbitrarily small. The necessary properties of

the parameters are listed in the next proposition .

Proposition 8.1 If c is sufficiently small and T is sufficiently

large,

(8.5)  exp{— p (t—c r ) v ( w )  + A 0
(t 5— cy 8) } < I , for T < a < t < T+l

(8.6) exp{czw 2 
— A 0T 5 } = T5”12

( 8 .7 )  exp{— czw2 
+ X

0
(T-f- l) ~} < cT~~~

’
~~

Proof a) By a simple calculation

t5 ~ 1(8.8) sup ~=.2._ = 5
T<o<t

To show (8.5) it suffices to have pv(w) > A~ 5 T
5 1  

. Now

v (w) > c (l+w )~~
’

(8 .9)  0

= c0
(A

0/a)~~
”2 T 812 

+

so that we need only show that

(8.10) c
0( 

A
0 
)
Y/2 

T 812 
+ ~ (T~~

8”2) > A
0
5T
8
~~ .

—24—
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Notice that yS/2 = 1—5 , and thus (8.10) becomes

(8.11) C
0 I ct )

_Y/2 
+ ~m > A

05

Finally we can take A
0 

= ( 1— c ) A
1 , in which

(8.12) c~~( 
A
0 ~

_ /2 
=

i . e .

(8.13) A1 = cm1

b) The equality (8.6) comes directly from the definition (8.4). The next

inequality (8.7) is proved by

2 
~ 

exp{A
0
((T-,-l) — T

(8.14) exp (—cgw + A
0

(T+1) } = - 

~~

-

exp{cmw — A
0
T }

—5/12
< C T

since 5 < 1  and

( 8.15) (T-~-l) 8 — T5 < c

p.
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IX The Iteration Equation

In the time interval T < t < T+1 , we choose w according to (8.3) and

denote x = x = as in (4 .8) . Let

(9.1) supp g
0 

c A supp h
0 

c A

(9.2) supp g1 
C A supp h1 

c A

as defined in (4.1). We solve the following inhornogeneous version of the itera-

tion equations (4.11) and (4.12):

(9.3) + ~Lg = XKh1

(9.4) ht + vh = —~K(g1+h1
),

for T < t < T + l ,

(9.5) g(t = T) = g0 , h(t = T) = h0

Suppose that T is large enough for Proposition 8.1 to be applicable and that

the inhomogeneities satisfy
-A T5

(9.6) h g 0 + h0ii < b
0 
e 

0

(9.7) ilh h i < b -O c m — - 0 — A t 5

(9.8) ilg 1
(t )  + h

1(t)ii < b
1 
e 

0

(9.9) iih (t)Il < b
1 c m —  1

The main result of this section is

Proposition 9.1 Let g and h solve equations (9.3)-(9.5) for T < t T+l,

and suppose that g
0
, h

0
, g

1, 
h
1 

have the5 bounds given by (9.6) — (9.9). Then if

T is sufficiently large,

(9.10) Ii g (t) + h (t)hi < b
2 
e °

(~~.ll) hih(t )il < b
c m —  2

with

(9.12) b
2 

= (1 + c T 1”3)b
0 
+ c T 1”3b

1

W~ can take b
2 

= b
1 , if

(0.13) b
1 

> (]. + 3cT 1”3)b

~~~
p.
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Proof a) The equations (9.3) and (9.4) are decoupled. First estimate hi gH .

Solve (9 .3)  to get

(9.14) g ( t)  = e
_ ( t_ T

~~~ g0 
— 1

t 
~~~~~~~~ XKh1(0) dO

According to (7 .24)

(9.15) i i g ( t ) b i  < e~~ 
( t_ T )v (w )

iig 0ii + e~~ 
( t_ a )v ( w ) ,i XK1~] (a) Ii da.

We estimate the two terms on the right separately. Using Proposition 6.1

and (9.2) we can bound

ii x K h
1 
(a) ii < cii h

1
il
2

(9.16) < c e~~~ hih (a)ii
— 1 cm

2
— cmw< c b  e

Next use (8 .5)  and (8 .7) from Proposition (8.1) to find that

iiX K h1
( cY ) ii < c b1 expt— p ( t — a ) v ( w )  — aw 2 }

< c b1 
exp(— p (t— a) - v (w) + A

0 
(t 5 — a5) }

(9.17) 6
5 2

exp ( A
0a — aw } • e

1 — A t 5

< C  b
1 

T 5’ 2 e 0

So the second term on the right side of (9.17) is estimated by

1
t 

~~~~~~~~~ li x Kh1
li da <~~

t 
b
1

cT 5
~~

2
e °

(9.18)

< c b1 
T 1”3 e~~ 0t

5
~

since t - T < 1 . The first term on the right of (9.15) is estimated in a similar

way as

e
_ t ’

~~~~~~~
h7) 

i i g 0ib < b
0 
exp{—p (t—T)v(w) — A

0
T5}

(9.19) 
~ ‘C

S

< b
0
e 0

I 
• 

by proposition 8.1. Therefore, after using (9.18) and (9.19) in (9.15),
p.

,
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(9.20) hlg (t)hi < (b
0 + c b1 

T 1”3)e 0

b) Next we estimate hi h (t ) i I  . Solve (9.4) by

(9.21) h ( t )  = e
_ (t_T)V

h0
_ jt e

t )
K ( g

1
+h1

) ( a da.

We just drop the e~~ terms in our estimate and end up with

(9.22) hl h (t)ll < i i h ~ ii + f
t

f l >~ K (g
1+h1

) ( c i ) l i  da -

Look at the terms inside the integral. The first one is

- — —(y+3/2 ) —
IX K9lhi cm = ii~~K~ g1hI < (l+w ) ii xKxg1hi~~~÷312

< (l+w) y+3~”2) c e
aw hi g 1

( a) l i ,

by Proposition 6.2

(9.23) < c b1 
(l+w) ~~~~~~~~~~~~ , by (9.8)

< c  b1(l+w r~~~
3”2

~ T
5112

, by Proposition 8.1

< C b1 
T +3,’2)5~’2+5~’l2, using (8.3)

< c b
1
T 1”3 

,

I. 
since S = -

~~
-

~~
-_ < 1 and (y+3/2)5/2 = 1—5/4 > 3/4.

The second term in the integral in (9.22) is

hi X Kh 1
(a ) il cm -~ (l+w) ~~~~~ Kh1(O)ii

a y+2

.-(y+2 )
(9.24) < c(l-e-w) iih 1il , using Proposition 6.1.

< c b
1 
T 

( Y+2 ) 8/2 
, using (9.8) and (8.3)

c b1 T
113

~mtploying (9.23), (9.24), and (9.7) in (9.22), we find an inequality for h as

(9.25) ii h (t)ih < b0 + c b1 
T 113

Therefore (9.11) will be true for b2 given by (9.12) .

C) We next calculate il h (t) l i  and i lh ( t )  + g ( t )h l

lihii
2 < ii hH

2 f ~~~~~~ dj
w<E

2
(9.26) < cii hli

2 
w ~~~~~— 

—2A 5

< c(b0 + CT 1”3b1
)2T8’

12 
T
5’
16 

e 0

p.
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using (9.25), the definition (8.4), and ( 8 . 7 ) .  Since S < 1 , 5/6 - 3/2 > 1/3

and
- 

(9.27) 11 h11 2 
< c(b

0 
+ cT~~’

13 
b
1

)T~~
”3

Combining this with (9.20), we find

II g + hhl 
2 

= II gIl 2 + ii hil 2

< (b
0 + cT~~

’3 b
1
)
2(l + cT V3) e °

(9.28) h g  + hli < b0 
+ c T 1”3(b0 

+ b
1
)

Therefore (9.10 ) will be true for b2 as in (9.11).

p.
,
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X Convergence of the Iteration Scheme

At last we are ready to show the convergence of the iteration scheme in

the time interval IT , T+l) .  We suppose that the Boltzmann equation has been

solved up to time T and that

A
(10.1) N E max{e 

0 
hh f (T)hi ,ii~ f(T)hI }

0 w cm
is finite. Now start the iteration procedure by defining

— t3)
(10.2) f

1
(t) = e f(T)

and define f~~1
, for a > 1, by (4.11) and (4.12) with starting values

(10.3) f (T) = f(T) -n+l

Also define

( 10.4) £ = f — fn+1 n+l n

and
A t 8

(10.5) N = max {e 0 H f ii ,ii ~ f ii I
T<t<T+l n ‘wn cm

A
(10.6) M = max {e 0 

~~ it .tt ’)~ £ it } .
T<t<T+l a w n c m

First we find uniform bounds on N . For N , we know that

(10.7) N
1 

= N
0 

< (1 + 3c T V3)N
0

Then we proceed by induction using Proposition 9.1, in which

g0 
= x~ 

f(T)

h
0 

= 
~~~~

= x~ f~
h =

~~~~ ~~1 w n
(10.8)

g = x  fw n+1

h = ~~ f
w n+1

b
0 

= N
0

b
1 

= N < (1 + 3c T l/:)N
0 

, 

-

~

I,



r ~~~~~~~~~~~~

‘ ‘

~~~~~~~~~~~~~~ 

‘

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

‘

~~~~~~~~~~~~~~~~~~~~~ 

_ _ _

with the result that

N < (1 + c T 1”3)N + c T
113N

(10 9) n+l — 0

< (1 + 3 c T 1”3 )N0
This is true for all n -

Next we find bounds on M . The first one is

(10.10) M
2 

< N
2 
+ N

1 
< (2 + 6c T~~

’3)N
0

The others are found by applying Proposition 9.1 to the equation for £
+l 

=

f — f  , which has
n+l n

= h
0 

= 0 ,

g1 = 
~~~~

h =
~~~~ 

‘Q~1 w n

(10.11) g = >
~w 

mn+1

w n+l

b
0
= 0 ,

b = M1 n

to find that

M < c T 1”3 M
(10.12) n+l 

< Cc T l/3) n 1
(2 + 6c T V3)N

0

For T large enough , c T 1”3 < 1 , and then the series with term M
n 

is sum-

mable , i.e.

(10.13) M < ~ (2 + 6c T 1”3 )N
n=2 1-c T /

f or T large enough. It follows that 
~~~~~~ 

- 

~~ 
converges and therefore

(10.14) f~ -‘- f

in the sense that

_~~ t5

e i f — f i t  - - 0
(10.15) h

p. iiy (f—f )il -* 0 -
W n cm

7. t
—3 1—
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The limit f is a solution of the problem (1.10) and (1.11)

Define
A t 8

(10.16) N = max {e 
0 ilfhl , hI~ fill

T<t<T+l w

Because of (10.9) ,

(10.17) N < (1 + 3c T 1”3 )N
0

This shows the decay of the solution in any time interval [T ,T+l] . But we are

not finished yet, since we need to examine what changes in going from one inter-

val to the next. That is done in the next section.

p.
—32—
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XI Propagation of the Estimate

So far we have found that f is exponentially decaying in the time interval

(T,T+l], according to (10.17), since N is finite. But we picked up a factor

(1 + 3c T 1”3), and in order to see the global time decay we must consider its

effect. Denote w(t) to be the continuously varying time-dependent cut-off

velocity as defined in (8.3) with t instead of T . Define

A t8

(11.1) N(t) = max{e 
0 

iI f (t)ii P il Xw(t)fIh a
}
~

In the last two sections w was fixed at w = w(T). Statement (10.17) can be

translated as

A t8

(11.2) max{e 
0 

Ih f (t)iI ,II~ f(t)ii I < (1 + 3c T~~’~
3) N(T)

w(T) cm —

for T < t < T + 1. But since w is increasing

(11.3) ih X (T) f(t)Ii a 
> iiX~~~~f(t~ i

and

(11.4) N(t) < (1 + 3c T~~
”3) N(T)

for T < t < T + 1. It follows that, for T + N—l < t < T+N,

N
N(t) < 11 (1 + 3c (T+K)~~~

3) N(T)

(11.5) 
K=1 

2/3
< c e~

t N(T)

Since 5 > 2/3 we obtain the global decay for iif (t)hI by just making the coef-

ficient in the exponential a little smaller, i.e. by changing from A0 
to A

Proposition 11.1 FiX T l~~ g~ enough, then

At8
(11.6) tl f(t)Ih < c e hh f(T)H

— cm

for t > T .

Proof: According to (11.5)

~
2/3

e Ih f(t)II < c eC N(T)
C] .1.7)

p. < c  eC ii f (T) Ii
a

—33—
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2Since 5 > - -  and A < A ,,~ ,

At 5(11.8) hi f (t)ii < c e hi f (T)hi -— cm

Finally we are ready to see the global decay of ii f(t)ii . In all the above

theory there has been the premise that T be large. But clearly the estimate

in Proposition 11.1 is preserved by a shift in time. Define

(11.9) f ( t )  = f(t—T) for ‘C > T

The argument of f is large enough to apply the results, and so

At~(11.10) il f (t)iI < c e ii f (T)ii
—

from which it follows that

At8(11.11) ihf(t) ii < ce lif (0)il -— cm
This is the result (3.1).

— 34—
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XII The Sup Norms

a) First we show the preservation of the cm norm. Rewrite the Boltzmann

equation (1.10), (1.11) as

(12.1) f(t) = e
t
~ f — j

t 
e
_ (t 5)

~
) 
KfCs)ds

Since e V 
< 1 we have

(12.2) it f (t)ii < h i f ii + ~~ ii e
_ (t_5)V 

Kf (s)Ii ds
c m —  0 c m  

0 
cm

Now

(12.3) tIe t—s)v 
Kf(S)ii < sup

sup (l+~)
l
~
’2 e~~

2 
IKf (~ ,s)L

The first factor on the right is estimated according to the following lemma.

Lemma 12.1

—t (l+~)
1 —v ’(12.4) sup e (l+~) < c(l+t)

for t > 0,~~j > 0, y’ > 0.

The second factor is recognized as ii Kf (s)hi
cm y+112 

. By splitting up this norm

into two terms with ~ < and ~ > in which will be chosen later,

we find 2
cm~ 3 2

ii Kf(S)Il
cm~~+l/2 ~ 

e 0 ii Kf (s)Ii 0 y+l/2 + 
(l+

~o
)
~ 

/ hi Kf(5)iI c m y +2
(12.5) 2

cm~0 3/2
< e iif (s)ii + (l4-

~ o
) hi f (s)hi ,

according to Proposition 6.1. Combining this with Lemma 12.1 we change (12.3)

to 2
— (t—s) —l—l/ 2~ cm~0 —3/2

(12.6) lie 1
Kf(s)ii < c (l+t—s) {e hifCs )1I + (1+~~) ~~~~~~~~

Next we substitute this into (12.2). Use the facts that iif (s )ii < clh f
0

il and

t —l—l/2y
that f (l+t-s) ds < c independent of t , to find

0 2

(12.7) ii f(t) ii < if ii + ce °Ii f ii + c(1+~ )
~ 3/2 sup iif(s)Ii

cm — 0 cm 0 c m  0 0-cs<t

Choose 
~~ 

large enough that c(1+~0Y
3”2 

<
~~~~~

- - Then 
— —

1. ’ — —
IL, /

~~ 
_ L . - 

• 
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(12.8) sup Ii f (s)ii < ciI f~ ii
0<s<t

which proves (3.3) in Theorem 3.1.

b) Next we show the decay of ii f hi c. • As before we first look at a fixed time

interval [T,T+l]. Define w as in (8.3) and denote

(12.9) g = Xw
f h =

A t 8 A+A
(12.10) Q(t) = e 1 hl f(t)ii , with A

1 
= 

2
0

Use (3.3) in Theorem 3.1 and (8.7) in Proposition 8.1 to estimate
2

(12.11) iih(t )ii < c e~~
’ hi f (t)ii
2 cm

—cmw< c e  li f il
— 0 c m

—A t5

< c e  1 iif hi
— 0 c m

By rearranging the Boltzmann equation , we write

(12.12) g(t) = e~~
t_5)

~ g(T + j
t 
e ’C

~~ X~
I(f(a)da

Now
-A T

(12.13) hIg(T)fl < Q(T)e 1 
-

Since A
1 

< A
0 , the statement (3.1) of Theorem 3.1 is also true with A 1

instead of A . Using that and Proposition 6.1, we find

(12.14) iIx~, K f(a)il < c  ii fii

< c e  1 ii f lh
— 0 c m

Since V > V ( w ) for ~ < w

A T 8 —A
(12.15) hl g (t)iI < e

t_T
~~~~~ e 0 Q(T) + c f ’C e t

~~~~~~~e 
1 

dahi f0iI~~.

It follows from (8.5) in Proposition 8.1 that

(12.16) — (t—ø)v(w) — A
1
c8 < — A

1
t8 ,

and

(12.17) — (t—T)v(w) — A
0
T8 < —A

1
t8.

p.
, .
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There fore

(12.18) ilg( t)ih < e
_A
1
t8

(Q(T) + Cli f
0

h I )  -

Combine this with (12.11) to find that

(12.19) Q(t) < Q(T) + cii f0hh

for T < t < T - i . l

As before the statement (12.19) is true for large T , but can be made into

a statement for all t . By adding up the contributions in each time interval

we get

(12.20) Q(t) < c t h f  II -0 c m  8
As before the factor t can be absorbed into the exponential e 

1 
in Q , by

replacing the coefficient A
1 by A. This results in the desired inequality

(3.2). Finally the proof of Theorem 3.1 is finished .

p.
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